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We shall consider the following optimum problem. A system 

dx’ -= 
dt 

gi(C 2, u). . xX(@ = zof, i=l,...,n 

of ordinary differential equations and initial conditions is given, and U (6 ) = (U’( 8 ). 

,..* U’( 6 ) ) is the control vector-function. 

Moreover, a set of relations expressed in terms of finite equalities (9 

i-U (t; X, U) = 0, j = l,.. , r <rn (21 

is given and we assume that the matrix ll%?j / dui 11 is of maximum rank. 

Our aim is to define the control function U( 6 ) which makes the functional 

J = S, (z (T), T), a minimum. This functional is a function of a finite point (X(T),J?) 

on the phase trajectory in the (X , $ ) -space 

S&tz(T)$ T) = F (X1 (T), *.., zn(T), T) (3) 

We know, that the stated problem can be solved by means of the Bellman p] differ- 
ential equation (usual summation convention is adopted here) 

as, C as 
-=max - 

at 
Tgi(t; 2, u) , 

3 
u E A (4 X) 

u 8X1 
(4) 

Here A (8 , X) denotes the aggregate of admissible controls, i. e. of controls satisfy- 
ing the condition (2). Solving (4) with the boundary condition (3) we find the function 
S, (x, t) , which on substitution into 

u = y (r, t, as, /axi) (5) 
obtained from the maximum condition 

a 4 as 
_.&Ql; 2, u) + l?jAj (t; 5, u) 

du axL 1 = 0 

leads to Expression 
u = ‘p (2, t) 

(6) 

(7) 

describing the synthesis of the optimum control. Solutions of the system of equations 

dxi/dt = gi (t; x, cp (x, t)) (6) 

9 The case of relations defined in terms of finite inequalities is easily reduced to the 
present case by introducing “auxiliary” controls. 
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minimize the functional (3) under the arbitrary initial conditions X’( i5o ) = Xi0 ; at 

the same time (2) is satisfied identically, i. e, RI (t; 5, cp (3, t)) -. 0. 

The argument leading to the Bellman equation (4) is well known. In fact, (4) repre- 

sents a differential formulation of the principle of the optimum. Solution of (4) with 

given initial conditions, yields the synthesizing function (7), which on substitution into 
the right-hand side of (4), gives 

as, as, i 
at=- ---g (C xv cp (2, t)) 

Let us now return to the problem stated at the beginning and let us consider some 
admissible control u(X , 6 ) . We should note that the function u chosen is a function 

of two independent variables x and fi . 

Replacing U in (1) with u(X, ti ) , we arrive at the differential equations of admis- 

sible trajectories. With the specified initial state (Xo , to) , the admissible trajectory 
is defined uniquely. 

Consider the functional ST(Z~, to) on the admissible trajectory. Its value is defined 

only by the final (at the instant 8 = y) position at the phase point, therefore this value 

is independent of the choice of the initial point on the admissible trajectory. This is 

expressed by dS, (% lo) 

dt, = 
0 (I’)) 

which is valid along the admissible trajectory, 
Performing the differentiation on (10) and taking (1) into account, we obtain 

as, (%I, to) as, (To, to) i 
at, = - azoi g (to; x0, u (x0, lo)) 

or, discarding the zeros. 
as, (z, t, a+ (z. t, . 

at = - azi g'(t; 2, u (r, t)) (11) 

Up to now we have considered (11) only along the admissible trajectory: it should now 
be pointed out that any trajectory of (1) (with u(X) t ) replacing U) can be selected 

as admissible. Hence, by (10) ST(ZO, to), is maintained along any trajectory of(l), 

which in turn implies p] that ST(z, t) satisfies, as a function of two variables, (X , t), 

Equation (11) considered as a first order partial differential equation. 
It should again be stressed that the coordinates of the initial point of the admissible 

trajectory appear as the argument of ST(z, t) and the function s itself is defined as 

some combination of coordinates of the final point of the trajectory. With the control 
chosen, the values of ST (2, t) are conserved during the motion along the trajectory. 

consequently the minimum of S, (Z (T), T) coincides with the minimum of *ST(~o, tn). 
We find, however, that, while the values of Xo and 6, are known, those of X( y) 

are not. Therefore the value of ST(Q to) can be minimized in place of ST(T,(T), T) 

at the given point (Xo , T&, ) of the boundary at the admissible region of the X 9 6 

plane. 
Thus we arrive at the following optimum problem for Equation (11) considered as a 

first order partial differential equation: to find a control function U (X, fi) of two 
independent variables acted upon by the constraints (2) such, that the solution J’, (2, t), 
satisfying condition (3) when t = T, assumes a minimum possible value at the point 

(X,, to). The control is sought in the class of piecewise continuous functions and 
the solution ST (2. t) in the class of continuous functions of two independent variables, 
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Solution of this problem is obtained at once, using the method given previously [3]. 

Denoting ST(z, 1) by 2 , we shall write the basic equation (11) (taking for simplicity 

the case of one coordinate x : the case of several coordinates can be dealt with in the 

analogous manner) as 21 =- - g[. ZY = 5 

Let US introduce the Lagrangian multipliers 5 , ?J and r. Using the Hamiltonian 
function 

we shall construct Euler’s equations 

which, after eliminating 7 , become 

a6 1 at + gag I a~ + kag I ax = 0 (W 
On the characteristic x = x(t) , (12) assumes the form 

% = 
dt - E [21x =I(t) 

from which it follows that the sign of 5 on the characteristic is set by the sign of the 
initial value of 5 . 

Weierstrass’ function constructed uner the assumption that Z is continuous on the 

boundary on the region of variation [4] is found to be equal 

AH=--- cg:‘r;T t;k---1 

here g corresponds to the optimum control, Chile 'G to the admissibleoontrol ; ts and 

=, are the direction cosines of the region of variation, 

If Z is minimized at t = to and x = xo , then the natural boundary condition 
[3] gives 

E (@ = 6 (z - To) > 0 

where 6 is the delta function and 7 denotes the length of arc of the boundary of the 

main region, traversed in the positive direction (in our case this region consists of a strip 

tos5tTontheplane (x, t): natural condition is postulated on the line ti = to). 

In fact, the given condition defines only the characteristic beginning at the point 
(x0, to ) . Therefore the requirement that AD 0 , is actually imposed and fulfilled 
only along this characteristic, where it is equivalent, as we shall show later, to the 
usual maximum condition c [g - C] > 0. 

Indeed, our previous argument implies that 5 > 0 along the characteristic and it 

only remains to show that the relation (gt+ - 2,) / (Gt - ZJ is always positive. When 
Q = G, the above relation is equal to unity: when gg G , then such directions (tS, ZJ 

can always be found, which correspond to the negative value of the above relation. 

Such directions should be excluded from our investigation, since the corresponding 
characteristics arrive at the discontinuity (boundary of the region of variation) from both 
sides with the result, that the perturbations accumulate at the discontinuity instead of 

passing through it, The usual situation is, that the perturbations originating in the region 

of variation pass through its boundaries and enter the outer parts of theregion. and this 
is only possible when their velocities of propagation (slopes of characteristics) are, 
simultaneously, either greater or smaller than the velocity of propagation of the discon- 
tinuity (slope of the boundary of the region of variation). The last requirement is equi- 
valent to the demand that the expression quoted above, is positive. 
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We thus see, that in our problem a genuine restriction on the slope of the region of 

variation, appears. Weierstrass’ condition thus assumes a form of an inequality 
- 5 [g-G ] 2 0 valid along the characteristic originating at the initial point (Xc. tic ). 

Equation (11) is at the same time rewritten as 

as, =-_MBX 
asT i 

g (t; $9 u (r, t)) t 1 u E A (t, %I at u -3 
valid along the optimum trajectory. This, on utilizing a well known argument [S] 
easily leads to Bellman equation, 
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